Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Langmuir ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691012

RESUMO

Boron nitride nanosheets (BNNS) are expected to be ideal fillers because of their high thermal conductivity and excellent electrical insulation. However, it is still an open challenge to produce BNNS on a large scale using ecofriendly solvents. Here, first, we demonstrate an effective liquid exfoliation method for producing BNNS via utilizing deep eutectic solvents (DES) composed of D,L-menthol and various acids with the assistance of ultrasonication. The results show that the BNNSs with sizes of 1-2 µm in width and 6-8 nm in thickness were successfully exfoliated with a DES formulation of D,L-menthol and decanoic acid. Second, the obtained BNNSs were used for fabricating 1,6-hexanediol diacrylate@polydopamine functionalized BNNS (HDDA@BNNSs-PDA) core-shell microspheres via a Pickering emulsion method. Furthermore, these microspheres were incorporated into a polyvinylidene fluoride (PVDF) matrix to construct 3D thermally conductive networks, leading to a substantial enhancement in the thermal conductivity of the resulting composites. Impressively, the composites with only 25 wt % of BNNS loading reach a high thermal conductivity of 3.20 W/m K, which is a 1500% increase over the pure polymer matrix. This work not only provides a significant way for producing BNNSs ecofriendly but also demonstrates a tactic for constructing 3D thermally conductive networks.

2.
ACS Nano ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728215

RESUMO

The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.

3.
J Neural Eng ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701773

RESUMO

ObjectiveElectroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting.ApproachTo address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets.ResultsIn both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios. Finally, we perform visualization of the channel-attention to project the model's reliance on different channels onto scalp topographic maps.SignificanceFetchEEG is a novel hybrid method based on EEG for emotion classification, which significantly improves the performance of recognition and is effective and feasible.

4.
J Transl Med ; 22(1): 365, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632658

RESUMO

BACKGROUND: Molecular subtyping is expected to enable precise treatment. However, reliable subtyping strategies for clinical application remains defective and controversial. Given the significance of tumor immune dysfunction and exclusion (TIDE), we aimed to develop a novel TIDE-based subtyping strategy to guide personalized immunotherapy in the bladder cancer (BC). METHODS: Transcriptome data of BC was used to evaluate the heterogeneity and the status of TIDE patterns. Subsequently, consensus clustering was applied to classify BC patients based on TIDE marker-genes. Patients' clinicopathological, molecular features and signaling pathways of the different TIDE subtypes were well characterized. We also utilize the deconvolution algorithms to analyze the tumor microenvironment, and further explore the sensitivity and mechanisms of each subtype to immunotherapy. Furthermore, BC patient clinical information, real-world BC samples and urine samples were collected for the validation of our findings, which were used for RNA-seq analysis, H&E staining, immunohistochemistry and immunofluorescence staining, and enzyme-linked immunosorbent assay. Finally, we also explored the conservation of our novel TIDE subtypes in pan-cancers. RESULTS: We identified 69 TIDE biomarker genes and classified BC samples into three subtypes using consensus clustering. Subtype I showed the lowest TIDE status and malignancy with the best prognosis and highest sensitivity to immune checkpoint blockade (ICB) treatment, which was enriched of metabolic related signaling pathways. Subtype III represented the highest TIDE status and malignancy with the poorest prognosis and resistance to ICB treatment, resulting from its inhibitory immune microenvironment and T cell terminal exhaustion. Subtype II was in a transitional state with intermediate TIDE level, malignancy, and prognosis. We further confirmed the existence and characteristics of our novel TIDE subtypes using real-world BC samples and collected patient clinical data. This subtyping method was proved to be more efficient than previous known methods in identifying non-responders to immunotherapy. We also propose that combining our TIDE subtypes with known biomarkers can potentially improve the sensitivity and specificity of these biomarkers. Moreover, besides guiding ICB treatment, this classification approach can assist in selecting the frontline or recommended drugs. Finally, we confirmed that the TIDE subtypes are conserved across the pan-tumors. CONCLUSIONS: Our novel TIDE-based subtyping method can serve as a powerful clinical tool for BC and pan-cancer patients, and potentially guiding personalized therapy decisions for selecting potential beneficiaries and excluding resistant patients of ICB therapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Imunoterapia , Biomarcadores Tumorais , Algoritmos , Análise por Conglomerados , Microambiente Tumoral , Prognóstico
5.
J Hazard Mater ; 470: 134274, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608587

RESUMO

The sluggish kinetics of Fe2+ regeneration seriously hinders the performance of Fenton process. However, the conventional Fenton system excessively stifle hydrogen-producing reactions, ignoring the significance of active hydrogen (H*) in Fe3+ reduction. Herein, a strategy of H* modulation is developed by decorating molybdenum disulfide (MoS2) on a graphite felt (GF) cathode to boost Fe2+ regeneration in solar-driven electro-Fenton (SEF) process. With MoS2 regulation, moderately dispersed MoS2 on GF can serve as a bifunctional cathode, where the H* and hydrogen peroxide (H2O2) are simultaneously generated through H+ reduction and O2 reduction, respectively. The in-situ generated H2O2 can trigger Fenton reactions with Fe2+, while the H* with robust reducing potential can significantly expedite Fe3+ reduction, consequently enhancing the HO• production. Both DFT calculations and EPR experiments confirm that H* can be activated via MoS2 decoration. The results show that Fe2+ concentration in the MoS2 @GF-SEF system remains at 15.74 mg/L (56.21%) after 6 h, which is 17.89 times that of the GF-SEF system. Moreover, the HO• content and organics degradation rate in the MoS2 @GF-SEF are 3.61 and 5.30 times those of the GF-SEF, respectively. This study provides a practical cathode strategy of H* modulation to enhance HO• production and electro-Fenton process. ENVIRONMENTAL IMPLICATION: Boosting Fe2+ regeneration is of great value for the Electro-Fenton process. Herein, report a strategy to achieve this goal based on a MoS2 @GF cathode. Remarkably, the MoS2 @GF system exhibits exceptional efficiency for both various refractory organic compounds with environmentally hazardous effects and sterilization aspects, which can also work over a wide range of pH values (3-11). Specially, this system is driven only by solar energy. These characteristics make the electro-Fenton system more suitable for practical wastewater treatment.

6.
Front Neurosci ; 18: 1373375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660220

RESUMO

Objective: To observe the efficacy and safety of pelvic floor magnetic stimulation (PFMS) combined with mirabegron in female patients with refractory overactive bladder (OAB) symptoms. Patients and methods: A total of 160 female patients with refractory OAB symptoms were prospectively randomized into two groups. Eighty cases in the combination group accepted PFMS and mirabegron therapy and 80 cases as control only accepted mirabegron therapy (The clinical trial registry number: ChiCTR2200070171). The lower urinary tract symptoms, OAB questionnaire (OAB-q) health-related quality of life (HRQol), symptom bother score and OABSS between two groups were compared at the 1st, 2nd and 4th week ends. Results: All of 160 patients were randomly assigned to two groups, of which 80 patients were included in the combination group and 80 in the mirabegron group. The incidences of LUTS, including urgency, frequent urination, and incontinence episodes, in the 2nd week and the 4th week after combination treatment were significantly lower than those in the mirabegron group (p < 0.05). The incidence of drug-related adverse events between two groups was similar, and there was no statistically significant difference (p > 0.05). With respect to secondary variables, the OAB-q HRQol score in the combination group was statistically superior in comparison with that in the mirabegron group between the 2nd week and the 4th week (p < 0.05). This was consistent with the primary outcome. Meanwhile, from the second to fourth week, the OAB-q symptom bother score and OABSS in the combination group were both lower than in the mirabegron group (p < 0.05). Conclusion: Combination therapy of PFMS and mirabegron demonstrated significant improvements over mirabegron monotherapy in reducing refractory OAB symptoms for female patients, and providing a higher quality of life without increasing bothersome adverse effects. Clinical Trial Registration: https://www.chictr.org.cn/, ChiCTR-INR-22013524.

7.
J Investig Med ; : 10815589241248073, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594222

RESUMO

OBJECTIVE: The aim of this study was to evaluate the clinical features, pathological characteristics and prognosis in myeloperoxidase (MPO)-antineutrophil cytoplasmic antibodies-associated glomerulonephritis (AAGN) with renal arteritis. METHODS: The study involved 97 children from five pediatric clinical centers with MPO-AAGN who exhibited distinct clinical features. The patients were divided into AAGN-A+ and AAGN-A-, based on the presence or absence of arteritis, and the disparities in clinical, histopathological characteristics, and prognosis between the two groups were evaluated. RESULT: In contrast to the AAGN-A- group, the children in the AAGN-A+ group exhibited more pronounced clinical symptoms and renal pathological injury. Arteritis positively moderately correlated with the serum creatinine (Scr), IL-6 (interleukin-6), urinary neutrophil gelatinase-associated lipocalin (NGAL), negatively moderately correlated with serum complement C3. The renal survival rate in the AAGN-A+ group was significantly poorer than AAGN-A- group (χ2=4.278, P=0.039). Arteritis showed a good predictive value for end-stage kidney disease (ESKD), and C3 deposition and arteritis were independent risk factors for the development of ESKD in children with MPO-AAGN. CONCLUSION: Arteritis is a significant pathological change observed in children with MPO-AAGN, and the formation of arteritis may be related to the inflammatory response and activation of the complement system.

8.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676277

RESUMO

In order to realize the accurate and reliable fault diagnosis of hydraulic systems, a diagnostic model based on improved tuna swarm optimization (ITSO), optimized convolutional neural networks (CNNs), and bi-directional long short-term memory (BiLSTM) networks is proposed. Firstly, sensor selection is implemented using the random forest algorithm to select useful signals from six kinds of physical or virtual sensors including pressure, temperature, flow rate, vibration, motor power, and motor efficiency coefficient. After that, fused features are extracted by CNN, and then, BiLSTM is applied to learn the forward and backward information contained in the data. The ITSO algorithm is adopted to adaptively optimize the learning rate, regularization coefficient, and node number to obtain the optimal CNN-BiLSTM network. Improved Chebyshev chaotic mapping and the nonlinear reduction strategy are adopted to improve population initialization and individual position updating, further promoting the optimization effect of TSO. The experimental results show that the proposed method can automatically extract fusion features and effectively utilize multi-sensor information. The diagnostic accuracies of the plunger pump, cooler, throttle valve, and accumulator are 99.07%, 99.4%, 98.81%, and 98.51%, respectively. The diagnostic results of noisy data with 0 dB, 5 dB, and 10 dB signal-to-noise ratios (SNRs) show that the ITSO-CNN-BiLSTM model has good robustness to noise interference.

9.
Microb Biotechnol ; 17(3): e14435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465781

RESUMO

The use of microbial inoculant is a promising strategy to improve plant health, but their efficiency often faces challenges due to difficulties in successful microbial colonization in soil environments. To this end, the application of biostimulation products derived from microbes is expected to resolve these barriers via direct interactions with plants or soil pathogens. However, their effectiveness and mechanisms for promoting plant growth and disease resistance remain elusive. In this study, we showed that root irrigation with the extracts of Streptomyces ahygroscopicus strain 769 (S769) solid fermentation products significantly reduced watermelon Fusarium wilt disease incidence by 30% and increased the plant biomass by 150% at a fruiting stage in a continuous cropping field. S769 treatment led to substantial changes in both bacterial and fungal community compositions, and induced a highly interconnected microbial association network in the rhizosphere. The root transcriptome analysis further suggested that S769 treatment significantly improved the expression of the MAPK signalling pathway, plant hormone signal transduction and plant-pathogen interactions, particular those genes related to PR-1 and ethylene, as well as genes associated with auxin production and reception. Together, our study provides mechanistic and empirical evidences for the biostimulation products benefiting plant health through coordinating plant and rhizosphere microbiome interaction.


Assuntos
Citrullus , Fusarium , Microbiota , Citrullus/genética , Citrullus/microbiologia , Rizosfera , Transcriptoma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo , Raízes de Plantas/microbiologia
10.
J Am Chem Soc ; 146(12): 8668-8676, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498937

RESUMO

Understanding the valency and structural variations of metal centers during reactions is important for mechanistic studies of single-atom catalysis, which could be beneficial for optimizing reactions and designing new protocols. Herein, we precisely developed a single-atom Cu(I)-N4 site catalyst via a photoinduced ligand exchange (PILE) strategy. The low-valent and electron-rich copper species could catalyze hydrophosphinylation via a novel single-electron oxidative addition (OA) pathway under light irradiation, which could considerably decrease the energy barrier compared with the well-known hydrogen atom transfer (HAT) and single electron transfer (SET) processes. The Cu(I)-Cu(II)-Cu(I) catalytic cycle, via single-electron oxidative addition and photoreduction, has been proven by multiple in situ or operando techniques. This catalytic system demonstrates high efficiency and requires room temperature conditions and no additives, which improves the turnover frequency (TOF) to 1507 h-1. In particular, this unique mechanism has broken through the substrate limitation and shows a broad scope for different electronic effects of alkenes and alkynes.

11.
J Med Chem ; 67(7): 5662-5682, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518121

RESUMO

HER2 mutations were seen in 4% of non-small-cell lung cancer (NSCLC) patients. Most of these mutations (90%) occur as an insertion mutation within the exon 20 frame, leading to the downstream activation of the PI3K-AKT and RAS/MAPK pathways. However, no targeted therapies have yet been approved worldwide. Here a novel series of highly potent HER2 inhibitors with a pyrido[2,3,4-de]quinazoline core were designed and developed. The derivatives with the pyrido[2,3,4-de]quinazoline core displayed superior efficacy of antiproliferation in BaF3 cells harboring HER2insYVMA mutation compared with afatinib and neratinib. Rat studies showed that 8a and 9a with the newly developed core have good pharmacokinetic properties with an oral bioavailability of 41.7 and 42.0%, respectively. Oral administration of 4a and 10e (30 mg/kg, QD) displayed significant antitumor efficacy in an in vivo xenograft model. We proposed promising strategies for the development of HER2insYVMA mutant inhibitors in this study.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/genética , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Hazard Mater ; 469: 134013, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522200

RESUMO

Given the criticality of indium (In) in high-tech applications, spent LCD screens can represent a viable secondary In resource. In this work, an innovative and alternative technology to selectively leach In from spent LCD screens using a microbial chelating agent, desferrioxamine E (DFOE), was developed. Indium was concentrated from spent LCD screens by implementing an adapted pre-treatment procedure, allowing the isolation of an indium-rich glassy fraction. During leaching, the competition between aluminum (Al) and In for complexation with DFOE leads to the precipitation of In(OH)3 at low DFOE concentrations (12-240 µM). After adjusting the optimal conditions (fraction size: 0-36 µM, pH: 5.5, S/L ratio: 1 g/L, 25 °C), the In leaching yield reached 32%, ten times higher than Al over 90 days with 5 mM DFOE. Thus, achieving high In recovery is possible through i) prolonging leaching durations, ii) selective leaching, and iii) minimizing Al interference. This is the first attempt to selectively leach In using a selected siderophore from end-of-life products with high concentrations of non-targeted elements (i.e. Al, Si, and Ca). This study demonstrates the potential of generating indium-rich leachates, which can be subsequently processed through the GaLIophore technology for In refining.

13.
Comput Biol Chem ; 109: 108027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340414

RESUMO

Channel-regulated peptides (CRPs) derived from animal venom hold great promise as potential drug candidates for numerous diseases associated with channel proteins. However, discovering and identifying CRPs using traditional bio-experimental methods is a time-consuming and laborious process. While there were a few computational studies on CRPs, they were limited to specific channel proteins, relied heavily on complex feature engineering, and lacked the incorporation of multi-source information. To address these problems, we proposed a novel deep learning model, called DeepCRPs, based on graph neural networks for systematically mining CRPs from animal venom. By combining the sequence semantic and structural information, the classification performance of four CRPs was significantly enhanced, reaching an accuracy of 0.92. This performance surpassed baseline models with accuracies ranging from 0.77 to 0.89. Furthermore, we employed advanced interpretable techniques to explore sequence and structural determinants relevant to the classification of CRPs, yielding potentially valuable bio-function interpretations. Comprehensive experimental results demonstrated the precision and interpretive capability of DeepCRPs, making it an accurate and bio-explainable suit for the identification and categorization of CRPs. Our research will contribute to the discovery and development of toxin peptides targeting channel proteins. The source data and code are freely available at https://github.com/liyigerry/DeepCRPs.


Assuntos
Semântica , Peçonhas , Animais , Peptídeos , Redes Neurais de Computação
14.
World J Urol ; 42(1): 88, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372802

RESUMO

PURPOSE: To compare the diagnostic ability of traditional radiographic urethrography and magnetic resonance urethrography (MRU) for iatrogenic bladder outlet obliteration (BOO), and explore the efficacy and complications of laparoscopic modified Y-V plasty for patients selected based on MRU evaluation. METHODS: 31 patients with obliteration segments ≤ 2 cm and no false passages or diverticula based on MRU evaluation from eight centers in China were included. Obliteration segments were measured preoperatively by MRU and conventional RUG/VCUG and compared with intra-operative measurements. Surgical effects were evaluated by uroflow rates, urethrography, or cystoscopy at 1, 3, 6, and 12 months post-operation and then every 12 months. Postoperative urinary continence was assessed by 24-h urine leakage (g/day). RESULTS: The results showed that MRU measured the length of obliteration more accurately than RUG/VCUG (MRU 0.91 ± 0.23 cm, RUG/VCUG 1.72 ± 1.08 cm, Actual length 0.96 ± 0.36 cm, p < 0.001), and clearly detected false passages and diverticula. Laparoscopic Y-V plasty was modified by incisions at 5 and 7 o'clock positions and double-layer suture with barbed sutures. All operations were successfully completed within a median time of 75 (62-192) minutes and without any complications. Urethral patency and urinary continence rates were 90.3% (28/31) and 87.1% (27/31), respectively. Three recurrences were cured by direct visual internal urethrotomy. Four patients had stress urinary incontinence after catheter removal 14 days post-operation, with urine leakage of 80-120 g/day, not relieved during follow-up. CONCLUSIONS: Laparoscopic modified Y-V plasty based on MRU evaluation is a promising approach for iatrogenic BOO, with a high patency rate and a low incontinence rate.


Assuntos
Divertículo , Bexiga Urinária , Humanos , China , Divertículo/cirurgia , Espectroscopia de Ressonância Magnética , Doença Iatrogênica
15.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393778

RESUMO

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Assuntos
Carbonatos , Ecossistema , Compostos Férricos , Nitratos , Nitratos/metabolismo , Processos Autotróficos , Temperatura , Enxofre/metabolismo , Reatores Biológicos , Desnitrificação , Nitrogênio
16.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 111-113, 2024 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-38384229

RESUMO

Objective: To explore the effect of routine reusable pipeline and disposable pipeline on ventilator quality control results. Methods: 17 ventilators were randomly selected to conduct quality control using routine reusable pipeline and disposable pipeline respectively. Quality control data were recorded and then paired t-test method was used to analyze whether the difference between the two pipelines was significant or not. Results: There were no significant differences in respiratory rate, tidal volume and end airway pressure between the two types of pipes ( P>0.05). The airway peak pressure of routine reusable pipeline was significantly higher than disposable pipeline ( P<0.05), but the difference was very small, only about 0.2 mbar which would not affect the conclusion of quality control. Conclusion: Quality control of ventilator is not affected by routine reusable pipeline and disposable pipeline, which can be replaced by each other.


Assuntos
Equipamentos Descartáveis , Ventiladores Mecânicos , Volume de Ventilação Pulmonar
17.
Small ; : e2310163, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389176

RESUMO

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d-O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2 @0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

18.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180963

RESUMO

Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Homeostase , Dedos de Zinco , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Nat Commun ; 15(1): 95, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167374

RESUMO

Although the acidic oxygen evolution reaction (OER) plays a crucial role in proton-exchange membrane water electrolysis (PEMWE) devices, challenges remain owing to the lack of efficient and acid-stable electrocatalysts. Herein, we present a low-iridium electrocatalyst in which tensile-strained iridium atoms are localized at manganese-oxide surface cation sites (TS-Ir/MnO2) for high and sustainable OER activity. In situ synchrotron characterizations reveal that the TS-Ir/MnO2 can trigger a continuous localized lattice oxygen-mediated (L-LOM) mechanism. In particular, the L-LOM process could substantially boost the adsorption and transformation of H2O molecules over the oxygen vacancies around the tensile-strained Ir sites and prevent further loss of lattice oxygen atoms in the inner MnO2 bulk to optimize the structural integrity of the catalyst. Importantly, the resultant PEMWE device fabricated using TS-Ir/MnO2 delivers a current density of 500 mA cm-2 and operates stably for 200 h.

20.
Nat Commun ; 15(1): 865, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286850

RESUMO

Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA